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Introduction

This  book  is  an  update  to  an  earlier  book  on   x86  computer
architecture, hardware and software. The x86 describes not only a
line  of  microprocessor  chips  dating  back  to  1978,  but  also  an
instruction  set  architecture  (ISA) that  the  chips  implement.  The
chip  families  are  built  by  Intel  and  other  manufacturers,  and
execute the same instructions, but in different ways. The results are
the  same,  arithmetically  and  logically,  but  may  differ  in  their
timing. 

Why the  focus  on  the  Intel  x86?  It  was  the  basis  of  the  IBM
personal computer (PC) family and its spin-offs. It has transitioned
from a 16 to a 32 to a 64-bit architecture, keeping compatibility for
40 years. It's an de-facto industry standard that has withstood the
test of time. 

The  purpose  of  this  book  is  to  provide  the  basic  background
information for an understanding of the 80x86 family. It will stress
the pervasiveness of this pc-based technology in everyday things
and  events.  The  original  book  was  a  spin-off  of  a  course  in
Computer Architecture/System Integration, taught by the author in
the  graduate  Engineering  Science  Program  at  Loyola  College
(now, Loyola University in Maryland). 

A pc  is  a  computer  I  have  on  my desk,  and  a  mainframe  is  a
computer I can't lift.  A server spends most of its time providing
services (data, internet) to other computers. 

How do we get a computer to do what we want? A big stick is
sometimes a help. The early computers in the late 1940’s and early
1950’s were wired by plugboards for the sequence of instructions,
and the numeric data was set in by switches. The program was run,
results were obtained, and changes made to the configuration for
new tasks. Faulty vacuum tubes were identified and replaced. This
was a rather time consuming process.
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The  author's  first  computer  experience  was  on  a  room-filling
Bendix G-20 mainframe. It was a 32-bit machine, using the Algol
language. His first assembly language experience was on an IBM
S/360 mainframe, specifically the Model 67 variant, with virtual
memory.  He  went  on  to  program  the  Univac  1108  series
mainframe (a 1's complement  machine),  the DEC PDP-8, 9, 10,
and 11, the Bendix G-15, the Athena Missile Guidance Computer
by Sperry Rand, designed by Seymour Cray, and many more. The
idea of a personal computer was, at the time, ludicrous. 

Introduction to the Second Edition

Since  the  first  edition  of  this  book  was  published,  quite  a  few
advances have been made in the X86 area. The author has moved
on to the ARM architecture for embedded systems. But, there was
a need to correct some typos and formatting issues, to clarify some
material, and to add some pictures. There is not much new material
included,  but  the  concepts  and  discussions  remain  valid.   A
glossary was added. 

Introduction to the Current (40  th   anniversary) edition

This new effort was triggered by the introduction of a new chip for
the  40th anniversary  of  the  x86  architecture.  Who  would  have
thought the architecture would remain commercially viable at the
time? This gives us a unique opportunity to see how Moore's law
has held up over time, and to compare and contrast the 40-year old
part  with  the  current  one,  to  understand  where  we  are  coming
from, and heading to.

I removed a lot of the basic material from the original  including
discussions of the number systems, data structures, I/O methods,
etc. These are generic, and can be found in many Introduction to
Computer Science texts.

I  have  added  details  on  the  newer  chips,  did  a  compare  and
contrast  with  the  original  8086,  and  included  some  material  on
AMD's rival x86-architecture chips. 

5



Author

The author has a BSEE in Electrical Engineering from Carnegie-
Mellon University,  and Masters Degrees in Applied Physics and
Computer Science from the Johns Hopkins University.  During a
career  as  a  NASA  support  contractor  from  1971  to  2013,  he
worked at all of the NASA Centers. He served as a mentor for the
NASA/GSFC Summer Robotics Engineering Boot Camp at GSFC
for 2 years. He teaches Embedded Systems for the Johns Hopkins
University,  Engineering for Professionals Program, and has done
several  summer  Cubesat  Programs  at  the  undergraduate  and
graduate  level.  He  is  involved  in  global  colloborative  projects,
mostly relating to space. 

Limitations of the technology

The  microelectronic  used  in  pc’s  has  some  basic  limitations
imposed by the laws of physics. The speed of light (186,000 miles
per second, or 300,000 kilometers per second) sets an upper limit
to how fast we can communicate. No information flows faster than
the speed of light. System complexity and testability sets limits to
the  implementation  of  systems.  Quantum  effects  become
important, as we use smaller and smaller features.

The  basis  of  microelectronic  technology  is  clean  sand,  silicon
being  the  semiconductor  material  of  choice.  It  is  cheap  and
plentiful.  We  use  etched  2-dimensional  structures  to  define  the
devices. Most are made by photochemical means. We don’t have
practical  (i.e.,  cheap)  3-dimensional  structures  that  are
manufacture-able (yet).

Microprocessor chips generate heat when switching, or changing
state. This is a tiny amount, but there are hundreds of millions of
transistor  switches,  so  the  chip-level  heat  generation  get  gewt
beyond  100 watts.  This  represents  a  cooling  problem,  requiring
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fans. More importantly, silicon is a poor heat conductor, and small
scale features inside the chip may get close to melting temperature
due to restricted heat conductance. This has limited chip switching
speeds.  The  use  of  different  substrates  can  help  alleviate  the
thermal  problem.  For  example,  diamond is  an excellent  thermal
conductor, although somewhat pricey.

And then there’s Moore's Law. In 1965, Gordon Moore of Intel
observed  that  the  number  of  transistors  per  area  on  integrated
circuits doubled every 18 months. It continues to do so. For how
long?  Moore’s  law  is  more  of  an  observation,  not  a  law.  It
comments on our ability, not our limits. It is an exponential growth
law,  and  there  are  multiple  laws,  one  for  computing,  one  for
memory,  one  for  communication.  Exponential  growth  is  not
sustainable in the long run. We'll see a little later on how it's doing,
when we compare the original 8086 to the 40th anniversary chip,
the Core i7-8086k.
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Hardware Elements of a Computer

This section will discuss the hardware components of the Intel x86
family.  Starting  in  1978,  Intel  introduced  the  16-bit  8086  as  a
follow-on to the 8-bit 8080 processor. The family continues today,
40 years later. It retains the same basic architecture as the earliest
chips, and so constitutes a valid family of devices. 

X86 Processor family

The 80x86 processor family began with the 8086 and 8088 models in
1978 and 1979. Stephen O. Morse lead the work at Intel. These chips
were followed by the 80286 in 1982. Each of these had an associated
floating point coprocessor, the 8087 and 80287. 

The  architecture  was  extended  from  16  bits  to  32  with  the
introduction of the 80386 in 1985, and its associated coprocessor, the
80387. The ‘386 and its associated coprocessor, were available in 16-
bit external bus versions, the SX series. The 80486 in 1989 combined
the  coprocessor  and  the  main  processor  on  the  same  chip.  In
addition, many other companies (such as AMD, NEC, IDT, Texas
Instruments, IBM, OKI, Fujitsu, Siemens, and others) also produced
these chips and variations under license. The commonality was the
ISA-86. The floating point coprocessor for the 80386 was the 80387.
The 80486, and subsequent chips, incorporated the floating point unit
on the same chip as the integer processor.

The  8088  was  the  8-bit  external  bus  version  of  the  8086.  Each
memory  word  took  two  accesses.  This  was  to  save  cost  on  the
memory architecture. The 8088 was chosen by IBM to be the basis
of  their  PC  architecture.  Embedded  control  versions  of  the
architecture were introduced as the 80188 and 80186. These included
some additional devices on the same chip, to reduce chip count in a
system, while maintaining compatibility with the ISA-86.
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These devices were designed to ease the transition from 8-bit to 16-
bit, by allowing legacy code to still run. The 80286 chip introduced
Protected Mode, an arrangement to extend the addressing capability
beyond  1  megabyte  to  16  megabytes.  The  80386sx  was  also
introduced with an “8088-like” interface.  The 80386sx and 387sx
used a 16 bit memory interface. For a while, the 80286 was actually
faster at executing instructions than the 80386 (at the same clock
rate), but this advantage was rapidly overtaken by increasing clock
rates. 

The 80386 featured a 32-bit real address, and 32-bit registers. It had a
46-bit  virtual  address,  with an on-chip memory management  unit
(MMU) to  translate  virtual  to  real  addresses.  There  were  now 6
instead of 4 segment registers, optional paging support in the MMU,
hardware support for multitasking, and some new instructions. The
80386 supported memory management by segmentation in the new
Protected mode. The ‘386 I/O supported 16- and 32-bit I/O using
adjacent I/O space byte addresses. The 32-bit flags register was a
superset of the 16-bit one, with the lower 16 bits being identical, and
new flags in the upper part. 

Operating systems such as OS/2, UNIX, Linux, bsd, and Windows
take advantage of Protected Mode's advanced features. For example,
multiple  copies  of  DOS  can  run  under  UNIX,  sharing  system
resources  transparently.  The  640k  memory  barrier  of  DOS  is
artificial.

There were three new control registers in the 386, six debug registers
for breakpoint addresses. There were additional registers to support
segmentation. The 80386 had three modes of operation. Real mode
made it a big strong 8086 with 32 new instructions, 2 new segment
registers,  and the debug registers..  Virtual-86 mode added MMU
functions for paging and a multitasking environment. Protected mode
was the big change. The earliest 80386’s could use the 80287 math
coprocessor,  but  that  changed when the  80387 became available.
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There were also third-party floating point processor chips that were
compatible.

The floating point coprocessor in the Intel architecture executes from
the same instruction stream as the main processor. For operand fetch,
the coprocessor uses a memory cycle steal, something like a DMA
operation as far as the main processor is concerned. The coprocessor
has its own set of internal registers, organized as a stack. Registers
are 80 bits wide.

The  Intel  numeric  coprocessors  also  do  operations  on  extended
precision integer (64-bit) and floating point format. They are faster
than the main processor in these operations, and, in addition, operate
in parallel with it. For example, a 64x64 bit multiply would takes
2100 microseconds on the 8086, but only 30 microseconds on the
8087 coprocessor, a speed up of a factor of seventy.

The  Intel  processors  and  associated  coprocessors  form  a  tightly
coupled pair. The main processor does all the instruction fetching. In
addition, it is responsible for transferring data to the coprocessor’s
registers. Execution of coprocessor instructions proceeds in parallel
with those of general  instructions.  The coprocessor  recognizes  its
own instructions, and executes them. Coprocessor instructions start
with a hex F. The main processor ignores coprocessor instructions.
Between  the  main  cpu and  the  coprocessor,  there  is  a  busy/wait
handshake mechanism for coordination. There is a control word and
a status  word in  internal  registers  in  the  floating  point  unit.  The
floating point unit also maintains its own instruction pointer and an
operand  pointer.  The  floating  point  unit  can  generate  exceptions
including  invalid  operation,  attempted  division  by  zero,
normalization, overflow, underflow, and inexact result. 

The instruction set includes load and store; the basic add, subtract,
multiply,  and  divide;  compare;  square  root;  and  certain  pre-
calculated constants in floating point format such as zero, one, pi,
log2(10), and others.
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The  80486  added  the  MMU and  the  floating  point  functionality
onboard the same chip, with a small  8 kilobyte on-chip data and
instruction cache. More operations became single cycle, and string
operations were faster. A barrel shifter  provided faster shifts. The
internal  data  buses were wider,  for faster  data transfer.  The ‘486
introduced the Byte Swap instruction to reverse the endianess of data
items.  This  allowed easier  access  to  IBM mainframe and Apple-
Motorola data. In addition, if the 80486 tried to access data that was
misaligned, an interrupt was generated. This condition is transparent
to the running program, but slows it down considerably.

Other x86 implementations that used emulation or translation of X86
instruction  to  internal  RISC  (reduced  instruction  set  computer)
instructions included NexGen Nx586, the PowerPC 625, the IMS
6250, the Toshiba R4x00 Tigershark, which translated x86 to MIPS,
and others. By the introduction of the Pentium-II and Pentium-III,
Intel  was  also  translating  x86  to  an  internal  optimized  RISC
instruction set.

At this point in the technology curve, not only could large amounts
of cache memory be included with the cpu chip, but multiple cpu’s
could  be  included  in  one  package,  a  technique  referred  to  as
multicore. The Pentium is, essentially a pair of ‘386’s plus a ‘387.
Intel’s patented technique of hyperthreading refers to a simultaneous
multithreading  implementation  in  Pentium  4  and  subsequent
processors.  Multiple  threads  of  execution  are  supported.  The
hardware plus the operating system software operate with two virtual
processors per physical cpu core. This approach is transparent to the
software. It is not quite as fast as having two physical processors, but
is certainly faster than one. 

The  x86  architecture  was  extended  to  64  bits,  the  IA-64.  This
includes not only 64-bit addresses and data, but significant levels of
instruction  parallelism,  using  speculative  execution,  branch
prediction,  a  register  stack,  and  other  optimization  techniques.  It
remains binary compatible with IA-32.
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Instruction  level  parallelism  provides  an  avenue  to  higher
performance,  at  the  cost  of  complexity.  We  include  additional
hardware,  with  the  overhead  of  managing  and  coordinating  this
hardware.  One technique is instruction re-ordering at  run time,  in
hardware. This means the hardware examines the instruction flow to
recognize and exploit opportunities for parallelism. We can also try
to predict branches. Your first guess would be that you would be
right ½ the time. For something like a loop structure, you could be
right most of the time, if you guessed that the branch was taken. In
the  control  speculation  approach,  we  move  loads  and  their
dependencies  above  branches.  In  data  speculation,  we  can  move
loads above possible conflicting memory references.  With control
flow prediction, we guess, and take the consequences. Unwinding the
results  of  a  wrong guess may not  incur  a  large  penalty.  Another
approach is to execute down two branch paths simultaneously until
the  branch  is  resolved.  The  correct  path  is  continued,  and  the
incorrect path is discarded. 

Virtual-86 mode was introduced in the 80386 as an 8086 emulation
mode.  The  80386  can  implement  multiple  8086  environments
running  “simultaneously”  in  protected  environments.  These  are
virtual  machines.  There  are  some  minor  differences  in  how
memory above 1 megabyte is treated. 
.
Page level protection was implemented on the 80386 and subsequent
processors. This involves a user/supervisor bit, and supervisor write
protection.  Paging  uses  smaller,  fixed-size  memory  blocks.
Segmentation uses larger, variable size blocks. Page mode is enabled
with a single bit. It can be used with segmentation, as an additional
layer of protection, with additional overhead. Pages in the x86 are
4096 bytes, at an address divisible by 1000h. The page directory and
tables are used to control the pages. CR3, the control register, has the
page frame address or the page directory in the high order 20 bits.
The page directory can hold 1 million entries. Each entry is a pointer
to a page table. The page table contains pointers to physical memory.
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Around the time of the Pentium introduction, other companies were
producing chips that used the x86 architecture, mostly under license
from Intel.  These included Cyrix,  Nexgen, Via Technologies, and
Transmeta. AMD holds a license from Intel for the x86 as well.

Cyrix  merged  with  National  Semiconductor  in  1997.   It  held  no
license  from  Intel,  but  rather  had  reverse-engineered  the  Intel
product.  This  lead  to  some  legal  battles  that  were  fought  to  a
stalemate.  Finally,  the  companies  cross-licensed  each  other's
products. 

Transmeta,  acquired  by  Novafora,  which  has  since  gone  out  of
business. Has licensed its tech to Intel. 

Nexgen was purchased by AMD in 1996. It's chip translated x86
instructions on the fly to its internal RISC architecture. 

Via Technologies manufactures x86 and  motherboard chipsets. It
is based in Taiwan. 

Atom

The Intel Atom cpu is a 32-bit x86 architecture optimized for low
power. It was introduced in 2008, and is available in multicore
and  hyper-threaded  editions,  with  speeds  beyond  2  GHz.
There are generally three models – N for low power,  Z for
mobile devices, and D for low-end desktop and D for low end
laptop and desktop. It translates x86 instructions into internal
RISC  instructions  on  the  fly,  and  can  execute  two  integer
instructions per clock. Because the parts are IA-32 and IA-64
compatible,  there  is  a  large  amount  of  available  legacy
software  available.  System-on-a-chip  devices  based  on  the
Atom were available in 2012, targeting the IoT market. The
SoC devices were built in a partnership with Google, and were
meant  to  run the  Android operating  system for  phones  and
tablets.  The  Atom  was  roughly  comparable  to  an  ARM
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Cortex-A8 in performance, but has a factor of 4 more power
draw. The Atom features in-order instruction execution,  and
has branch prediction. It has a relatively slow divide. The SSE
unit is faster in doing floating point calculations than the built-
in floating point unit (x87). The Atom supports Intel's real and
protected  modes,  as  well  as  hyperthreading,  where  each
physical  processor  core  can  support  2  logical  cores.  This
technique increases the utilization of the execution unit, which
can  be  both  good and  bad.  They also  have  a  Turbo  Boost
feature,  where  they  can  be  overclocked  for  brief  periods,
limited by heat generation. This involves both clock rate and
voltage.  There is also hardware support for virtualization, and
support  for  security  with   trusted  execution.  The  x86
architecture scales, as we have seen from the original 8086 in
1978, to the latest Atom model. It also now supports 64 bits,
as an architecture extension. The x86 processors use a version
of the 8086-era 8259 Interrupt Controller.  With the 8086, it
was  a  separate  chip.  Now it  is  included  with  the  cpu,  but
works  the  same.  Interrupt  vectors  are  kept  in  protected
memory. 

The Atom processor, E3900 series, and it's companion units, the
Celeron-based  N3350  and  Pentium-based  N4200  directly
address  the  Internet  of  Things.  All  come  in  a  quad-core
configuration,  and  are  implemented  as  a  module  (compact
flipchip ball grid array). The N3350 operates up to 2.4 GHz.
All of the models support up to 8 gigabytes of DRAM. The
4200 has a Pentium with a 2 megabyte cache, and operates up
to 2.5 GHz. The Atom-based units have 2 megabytes of cache.

Atom has some features targeted to the embedded world, such as
Intel's Speedstep, which is a low power sleep mode. It does
support JTAG. Ubuntu released a special version of its linux
for Atom-based netbooks, called Ubuntu Netbook Remix. 

The E3900 model can have a dual or quad core, with an associated
image  processor  (the  IMPU4),  dma;  SATA  connections,  6
USB-3 and 2 USB-2, 3 SPI, 1-SDIO, and support for an SD
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card. The high performance graphics unit can have up to 18
execution  units.  There  are  dual  audio  DSP's,  and  it  can
interface up to four MIPI-CSI cameras. There are four PCI-
express ports.

The Atom does in-order execution, 2 instructions per clock. It does
support  the  CPUID instruction,  introduced  with  the  80486.
This instruction returns identification data on the cpu, as well
as cpu features. Software can then tell what cpu version it is
running on. 

The Atom has on-chip instruction trace, via JTAPG.

X-86 virtualization

X86 virtualization allows for multiple x-86 operating systems to
share base x86 resources simultaneously, and is an example of
hardware virtualization. This was originally done by complex
software. Hardware support included in newer generations of
cpu chips vastly simplified the process. 

In Intel’s defined Protected mode, the operating system kernel runs
at a high privilege (ring 0) and applications at a low privilege
level such as ring 3. One approach is to run the hypervisor at
ring 0 privilege,  and the operating  system at  a  lower level.
Certain  operating  system  instructions  require  certain  ring
levels to be able to execute, however. Binary translation can
be  used  to  replace  these  with  other  instructions  that  will
execute  at  a  lower  level.  The  process  is  called  trap  and
emulate, but this involves overhead. 

Hardware  support  to  virtualization,  provided  by  both  Intel  and
AMD, involves  both  the  privileged  instructions,  and MMU
support. These were implemented in different ways.
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Intel-VT

Intel’s initial hardware virtualization support, called “Vanderpool”
was released on Pentium 4 models in 2005. I/O virtualization
can be enabled in the BIOS.

AMD-V

AMD’s  approach  to  virtualization  support  was  initially  called
AMD Secure Virtual Machine, and was available in 2006 on
the  Athlon-64  series  of  chips.   A  second  generation
virtualization  approach,  simply  called  AMD virtualization,
involved  an  AMD-developed  technique  called  Rapid
Virtualization  Indexing,  using  nested  page  tables.  The
presence  of  virtualization  support  can  be  determined  by
accessing the CPU flag.

Intel Core series

The Intel Core series addresses the high end workstation and server
market,  making  the  Pentium  the  entry  level  chip.  This  series
includes  the  i3,  i5,  i7,  i9  and  the  Y-series.  There  are  enough
variations on these chips to require a book of their own. The 40th

anniversary part is a Core i7. Intel considers it an 8th generation
part. 

The original Core product was a 32-bit dual-core X86, based on
the  Pentium-M. The Core  series  began to  implement  the  64-bit
architecture with the Core-2, and extended into the four-cpu Core
Quad. The i3 introduced a new micro-architecture, the Nahalem, in
2008. The Core-i7 used one of seven new microarchitectures. The
new  generation  used  the  Ivy  Bridge  microarchitecture.  A
microarchitecture is how the instruction set execution is handled
internally to the chip. It implements features such as pipelining,
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branch prediction,  superscalar  operation,  out  of  order  execution,
and register renaming. 

Core i7-8086k

Let's do a quick compare of the specs for the original 8086, and the
Core I7-8086k.

Gen         chip                       cores       year         arch         clock       transistors
  1 8086    1 1978 X86 5 mHz  29,000
  8 Core i7-8086k    6 2018 X86 5 gHz  109

The 8086 supported just one thread of execution, but in the Core-
i7, each core supports two threads of execution, for a total of 12. It
has  12 megabytes  of  cache  per  core.   It  supports  dual  memory
channels,  and requires a motherboard with a 1151 pin socket.  It
requires  a  premium  heatsink/fan  to  get  rid  of  its  95  dissipated
watts. 

The actual module is 4.6 x 4 x 2.75 inches. It uses DDR4 SDRAM.

AMD Ryzen

The  AMD  Ryzen  addresses  the  high  end  desktop,  is  in  direct
competitor to the Intel Core series, and uses the same instruction
set.  The highest  end chip at  the moment is  the Threadripper.  It
features 16 cores, and processes 32 threads of execution. It uses a
3.4 GHz clock, that can be boosted to 4 GHz. It uses a 4094 pin
socket. It came out in August of 2017. 

Moore's Law

Gordon Moore was a co-founder of Intel. He speculated that the
number of transistors in integrated circuits would double every two
years. This is somewhat because the next generation's fabrication
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facilities  are  built  with  the  current  generation  of  chips.  We get
better as we get better. Is there a limit, a wall? Of course. We're not
there  yet.  Let's  look at  the  8086 and the  new kit,  the  Core  i3-
8086k.

The 8086 had 29,000 transistors. The Core i7 has several billion.
So, the number of transistors in the chip has increased by a factor
of  100,000  in  40  years.  Interestingly,  the  transistor  size  has
decreased by a factor of 20,000. Smaller transistors are faster. 

Let me wave my hands and say an increase of 128,000, since I
want to do this in binary. So, in forty years, we have an increase
factor  of  128,000  or  217.  That's  17  doublings  in  40  years,  or
approximately  a  doubling  every  other  year.  Close  enough  for
scientific work. :^}

Instruction Set Architecture (ISA) of the
80x86 Family

Program (definition):
A magic spell cast over a computer allowing it to 

translate input statements into error messages

The  ISA  of  the  80x86  family  is  defined  by  Intel  Corporation.
Besides Intel, numerous other manufacturers make or have made
80x86  family  members  and  derivatives.  Specialized  embedded
versions of the 80x86 ISA evolved. The instruction set has been
emulated  in  software  on  competing  processors,  such  as  the
IBM/Motorola/Apple PowerPC. The instruction set was emulated
in hardware in chips such as the IMS 3250, or the PowerPC 615.

The  original  ISA was  a  16-bit  architecture,  extended  to  32-bits
with the Pentium series of processors. The next generation of chips
are a 64-bit architecture, the extension to ISA-64, which maintains
compatibility with ISA-32.
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Programmers model of the x86

The Programmer's view of the x86 Instruction Set Architecture 
(ISA)  includes: 
 The memory model, the registers (data), and the instructions 
(operations on data).

The Intel 8086 was a 16-bit processor, circa 1978. It was designed
as a follow-on to the earlier successful 8-bit 8080 processor. There
were big advantages in going to a 16-bit word, and the associated
8087  co-processor  provided  floating  point  capability.  Software
comparability was not maintained. 

The 8086 provided fourteen 16-bit  registers.  Four of these were
general purpose, and there were four pointer/index, four segment, a
flags register, and the program counter. With 16 address bits, the
processor could addresses 1 megabyte of memory. There were 135
basic  instructions,  including  multiply  and  divide,  and  many
variations. The chip provided support for the BCD data format, and
had  a  separate  I/O  space  with  65,000  input  and  65,000  output
ports. The I/O ports were 8-bits in size.

Status flags are automatically set by ALU operations, and can be
read by the program. These allow for the implementation of data
dependent  branches,  like  “branch  on  zero.”  The  status  flags
include:

 Carry flag, CF, set on high order bit carry or 
borrow.

 Parity flag  PF, set if even.
 Aux. Carry - key to BCD operations, set on carry or

borrow from lower 4 bits to upper 4 bits.
 Zero flag – ZF, set if results were zero.
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 Trap flag - if set, interrupt occurs after each 
instruction.

 Interrupt enable (programmer settable) - if not set, 
cpu ignores interrupts

 Direction flag - set by instruction, controls direction
of string moves, high to low, or low to big.

 Overflow flag - set if signed result cannot be 
represented

The Intel x86 instruction set

This section will discuss the storage elements on the cpu chip (the
registers),  the logical  and arithmetic  operations on data,  and the
ways to change the flow of control in the program. The principals
are  the  same  for  any  digital  computer,  but  the  implementation
varies.

The registers

First,  we  need  to  introduce  the  registers,  which  are  temporary
working  memory  on  the  cpu  chip  itself.  They  hold  data  items
temporarily,  and can serve as inputs to, and the output from the
arithmetic  logic  unit.  Some registers  are  involved in  addressing
memory.  The cpu has  other  registers  that  are  not  visible  to  the
programmer.

The default register size is 16 bits. The general purpose registers 
are named AX, BX, CX, and DX. Each 16-bit register is actually 
two adjacent 8-bit registers.

AX = AH, AL
BX = BH, BL
CX = CH, CL
DX = DH, DL
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The  16-bit  registers  were  extended  to  32  bits.  These  general
purpose  registers  are  called  EAX,  EBX,  ECX,  EDX.  (extended
AX, etc.). The AX register is the lower 16 bits of the 32-bit EAX
register, just as the AL register is the lower 8 bits of the 16 bit AX.

The 16-bit pointer/index registers are: SP, BP, SI, DI. These are
the  stack  pointer,  the  base  pointer,  the  source  index,  and  the
destination index registers. Pointer/index registers hold addresses.

The extended 32-bit  pointer  index registers  are  ESP, EBP,  ESI,
EDI.  Extended  stack  pointer,  etc.  These  registers  were  also
extended into 64-bit versions. 

Interrupt architecture

The 80x86 architecture has a single interrupt request line, and a
corresponding  acknowledge line. Interrupts can be prioritized by
external  hardware  (the  interrupt  priority  controller)  up  to  256
different ones. The PC architecture has 8, the AT architecture has
15. Intel’s interrupt controller is the 8259 chip, priority interrupt
controller.  It  manages  8  interrupts  and  is  cascade-able,  using  1
input to chain to another device. Interrupt with the  highest priority
are recognized first.

External interrupt sequence of events:

 Processor is happily executing instructions, when…
 A nasty external device signals for attention on the 

interrupt request line. If the interrupts are enabled,...
 The processor completes the current instruction, and

signals acknowledgment on ACK line.
 The interrupting device puts an 8-bit code on the 

lower 8 lines of the databus.
 The processor reads this code, multiplies it by 4, 

and jumps to that location.
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 Hopefully, this gets us to an interrupt service 
routine.

Interrupt vector table (IVT)

In real mode, the IVT is in the lower 1024 locations of RAM.  It is
a table of addresses. Each entry is 4 bytes, the new CS and the new
IP register contents. Who sets this up? It is the operating system’s
responsibility.  There  must  be  a  valid  entry  in  each  location,
otherwise an interrupt might go off into never-never land. 

Interrupt by software

INT xx is  the interrupt  instruction,  which causes a synchronous
interrupt.  It is repeatable and cannot be masked.  It can generate
any  possible  interrupt,  including  those  reserved  to  hardware
conditions (divide by 0, for example). Execution of the instruction
kicks  off  a  sequence  just  like  an external  interrupt  would.  This
provides a convenient inter-process communication mechanism. It
is used by the BIOS (interrupts 00 to 1F) and the DOS (interrupts
20 to 3F).

Interrupts from external sources

External interrupts are asynchronous, by definition. The processor
never knows when they will happen. The timing is controlled by
the external I/O device. 

Variable  length  instructions  in  the  architecture  make  it  hard  to
predict  exact  interrupt  response  times.  They  can  be  bounded,
however.  Remember  that  the  lengthy  string  instructions  are
interrupt-able.
The priority of external interrupts is generally higher than that of
the executing  program.  The Operating  system software sets  and
manages priorities. 
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Exceptions are interrupts caused by internal condition, usually the
result  of  instruction  execution.  They  are  synchronous  to  the
execution of instructions.. Examples are:

Fault - reported before the instruction is executed.
Trap - reported during execution of the instruction
Abort - severe error. No restart possible.

We can choose to ignore interrupts by software, all except the non-
maskable interrupt.

If we use the instruction, CLI - clear interrupt flag, the processor
will not recognize maskable interrupts. We really want to have the
interrupts locked out for as short a time as possible, because the
interrupts are a necessary part of system I/O. We can also use the
instruction STI - set interrupt flag, for the processor to continue to
recognize  and  respond  to  interrupts.  Interrupt  handling  is
transparent to the running program, and it leaves the processor in
the same state as before the interrupt occurs.

An  Interrupt  service  routine  (ISR)  is  a  small  subroutine  that
responds to  the  request  for  service  by the  external  device.  It  is
terminated by an IRET instruction, the return from interrupt. This
gets  the  returns  address  off  the  stack,  and  returns  to  the  point
where the cpu was executing, before the interrupt occurred. A lot
of  ISR’s  are  written  in  assembly  for  speed.  Writing  hardware-
specific  ISR’s  is  something  of  an art  form.  It  requires  in-depth
knowledge of the hardware on both sides of the interface.

The  INTO  instruction  generates  software  interrupt  4,  if  the
Overflow flag (OF) is set.

For  simultaneous  interrupts,  there  are  defined  rules  of  priority.
These depend on the specific processor, and can be found in the
manufacturer’s data sheet..
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Processor-reserved interrupts

Some of  the  256 possible  interrupts  in  the  x86 architecture  are
reserved by the chip manufacturer for specific purposes. In the PC
board  architecture,  more  interrupts  are  reserved for  specific  I/O
functions. Intel, the chip manufacturer, reserved the interrupts 00
thru 1Fx, but not all are defined.

The processor-defined interrupts:

00 = divide error
01 = single step
02 = NMI (non-maskable interrupt)
06 = invalid opcode
08 = double fault
0D = general protection fault
0E = page fault

An  exception  occurs  after  the  execution  of  an  instruction.  The
resulting  flag  is  cleared,  the  single-step  handler  is  executed  in
normal  mode.  It  resets  the  flag  before  exit.  The  80386  and
subsequent have built-in debugging features, relying on interrupts.

NMI

The  non-maskable  interrupt  is  the  highest  priority  external
interrupt;  it  cannot  be  masked  by  software.  This  feature  came
about because of an oversight in earlier  processor design.  It  the
hardware allowed the software to mask all of the interrupts, there is
the possibility of getting into a state that you could not get out of,
except for turning off the power. Since that time, all  processors
have an interrupt that cannot be ignored by the software. 

Invalid opcode interrupt
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On the 80286 and subsequent, this signals an attempt to execute a
bit pattern not defined by Intel as a valid opcode. Before this, the
case  could  happen,  with  unpredictable  results.  8086/8088  chips
made by different manufacturers did different things when these
undefined bit patterns were executed. It was an exciting time for
programmers.  In  the  Intel  80286,  the  D416 opcode  set  the  AL
register to the value of the carry.   Undocumented opcodes were
generally  not  supported  in  the  assembler  with  mnemonics,  but
could  be  defined directly  in  hex.  With  the  invalid  opcode trap,
undocumented op codes became obsolete. This is interrupt 0616 in
the Intel scheme of things.

Double Fault interrupt 

This is an exception during the handling of an exception. This is
very bad. It  means  we had two protection  violations  during the
execution of a single instruction. The processor goes to shutdown,
and we need to  RESET.  This  is  an  obscure  case  that  shouldn't
happen if the operating system is on its toes. (Do operating systems
have toes?)

Advanced double fault interrupt

It just gets better on the 80386 and subsequent processors. They
became smarter (more clever) in unraveling multiple faults. There
are  now  two  categories:  benign  faults  and  contributory  faults.
Some of these double faults are recoverable. This is the operating
system's responsibility.

General protection fault interrupt

This  is  mostly  associated  with  protected  mode.  It  signals  an
attempt to write into a read-only segment. This can be caused by
somehow treating the stack as read-only,  or treating the data as
execute-only. This is an operating system issue. 
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Page fault interrupt

On  the  80386  and  later,  this  signals  an  error  detected  during
address translation where a page is not present in memory.  This
happens a lot in virtual memory management, and is handled by
the operating system.

Addressing modes on the 8086

Segment registers in the x86 architecture select  a 64k byte block
(addressed by 16 bits) out of a 1 megabyte address space (provided
by 20 address lines), in real mode. 

Segments  start  on  16  byte  boundaries  (because  segments  are
multiplied  by  16,  or  shifted  left  by  4  bits).These  are  called
paragraphs.

There are 64k different segment starting addresses; in each, the 4 low
order address bits are zero. Segments may overlap, but it complicates
things.

Effective Address Calculation

The x86 does not have a flat directly addressed space like most
processors.  It  is  a  complicated  scheme.  We'll  discuss  the
processor's calculations of the effective address.

The Bus Interface Unit (BIU) Segment Base Registers

The processor can address 1,048,576 bytes of memory and requires
20 address lines in real mode. The internal registers of the processor
are 16 bits wide and can only generate 64k different addresses. The
designers of the x86 architecture decided to have each 64k segment
start  on  a  paragraph  address.  A  paragraph  address  is  always  a
multiple of 16.
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Notice that the 4 lower bits of the paragraph address are always 0;
therefore, the paragraph address can be expressed as a sixteen bit
binary number with the 4 lower bits implied. The paragraph address
of the 64k segment is stored in a segment base register located in the
BIU.

The 8086/88 had four segment base registers called the code segment
(CS), data segment (DS), extra segment (ES), and the stack segment
(SS). When an instruction references memory, the paragraph address
(shifted  left  by 4 bits)  of  the  proper  segment  is  added to  16-bit
address provided by the instruction. The result is the 20 bit address in
the  physical  memory.  The  16-bit  address,  provided  by  the
instruction, is called the OFFSET within the segment or the effective
address.

As an example, suppose an instruction is referencing location 1234h
in the data segment. Further, let us assume the paragraph register for
the  DS  segment  contains  2001h.The  physical  address,  within
memory, is calculated as follows:

paragraph register shifted left 4 bits = 20010h
plus offset of data within segment =  1234h

 -------
physical address in memory= 21244h

The virtual address is expressed as XXXX:YYYY,  where XXXX is
the contents of the segment base register and YYYY is the offset
within the segment. The virtual address of the above is: 2001:1234
SEG:OFF.

SEG * 16 + OFF = ADD

Example: 2001:1234=>21244 hex

 20010 ;shifted left by 4 bits, lsb’s = 0
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 +1234
------------
 21234 

Memory Segments

There are four segment registers in the original x86 architecture, with
default assumptions as to which segments they are pointing to.

The CS or code segment register points to the area where instructions
to be executed are stored. The IP or instruction pointer contains the
offset  address  within  the  code  segment  of  the  instruction  to  be
executed next.

The DS or data segment points to the area where data references will
be  made.  The  DS  is  also  used  to  specify  the  source  for  string
manipulation  instructions.  The  offset  address  is  provided  by  the
instruction.

The SS or stack segment points to the area where the stack will be
placed. The offset within that area is provided by the Stack Pointer.

The  ES  or  extra  segment  may  be  used  for  data,  or  destination
operands  of  string  manipulation  operations.  In  the  386  and
subsequent, there are also the two additional FS and GS segment
registers.

Code addressing modes

Code addressing is much simpler.  The CS register points to the
code segment, and the Instruction Pointer (or, Program Counter)
provided by the hardware provides the offset. Only a direct address
is  used.  This  will  be  the  address  of  the  next  instruction  to  be
executed,  as automatically calculated by the hardware. Since the
instructions are variable length, we need the calculation.
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Data Addressing Modes

Data  addressing  is  more  complicated.  An  instruction  usually
specifies  a  source  and  a  destination.  These  can  be  registers  or
memory or the stack. In different modes of addressing the address
is known (or, resolved) at different times. Some of the modes are
complicated, and little used. They can simplify the addressing of
complex data structures, such as multiple-dimensioned arrays. 

Format:  Instruction  Destination, Source

 where destination = memory or register
 source = memory or register or immediate

Details of Addressing modes:

Register  to  register  addressing  is  straightforward;  not  all
combinations are valid.  You need to check the instruction syntax.

Immediate to register or memory has a value calculated at assembly
time,  and included as  part  of the  instruction.  No string constants
greater than 2 characters are allowed.

In direct addressing, the contents of the symbolic memory address
are source and destination; and the value is calculated at load time.

In  indirect  addressing,  the  register  contents  are  considered  as  an
address; the value is calculated at run time. The indirect modes use
the BX, BP, SI, or DI registers. Memory operands default to the data
segment, except when BP used as a base register, when the stack
segment is assumed.

In Base + displacement mode, a fixed displacement is added to the
address. This could be an offset in a table, for example.
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In Base + index + displacement mode, the contents of a register + the
contents  of  an index register  plus  a  fixed  displacement  form the
address.

The  Segment  Override  Specification  is  used  to  access  data  in  a
different segment than the default one.

example:

 MOV AX , ES : [BX]

A word within the extra segment at an offset equal to the contents of
BX will be moved into register AX. Recall that the Extra segment is
a Data-type segment.

Program Flow

JUMPS

Jumps implement changes in the flow of a program. They can be
unconditional  or  conditional.  The  unconditional  jump  is  always
taken; it is the GOTO. The conditional Jump depends on the result of
a  previous  calculation  in  the  program,  as  contained  in  the  flags
register.

LOOPS

Loops  are  control  structures  that  are  executed  for  a  number  of
iterations times, or are executed until a calculated condition is met. 

TEST BITS & JUMP

 In terms of jumps, we must consider the concept of distance to the
referenced label. This is the number of memory bytes (the difference
in addresses) of the referring and the referenced items.  From the
current instruction, labels may be in one of three distance categories:
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 Short     -128 to + 127 bytes away

 Near      -32768 to 32,767 bytes away, but in the same segment

 Far     in a different segment
 
A short reference only needs 1 byte of address specifier, and a near
reference needs 2 bytes. A far reference needs 4 bytes. Two hold the
offset, and two hold a new segment address.

A J U M P does a transfer unconditionally to a specified address:

syntax:

 J M P operand

where operand := register or address

The register contents or address value is used with CS to form a new
effective address, which is then used to update the IP register.

Examples:

 J M P Label1

Label1: jump target

This instruction generates 3 bytes of code, as Label1 is a forward
reference, and the assembler must assume a near jump (within the
same segment, but greater than 127 bytes away).  If you know that
the target address is within 128 bytes, you can force a short jump:

J M P S H O R T Label1
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This  has  the  effect  of  generating  a  2  byte  (instead  of  3  byte)
instruction  that  executes  slightly faster.  This  will  also  generate  a
warning message. If the target is more than 127 bytes away, an error
message  will  be  generated.  For  backward  (previously  defined)
references, this procedure is not required.

In  the  case  of  far  jumps  case,  the  target  address  is  in  another
segment, and a 5 byte instruction is generated:

 J M P FAR PTR Label1

The PTR (pointer) operator forces the operand Label1 to have the
type FAR. A total of 4 bytes is required to specify the new segment
(2 bytes) and the offset (2 bytes).

Conditional  jumps  involve  a  two-step process:  test  the  condition,
jump if true; continue if false.

Syntax:

 CMP operand 1, operand 2
 J XX address

where:

operand 1 := register or memory
operand 2 := register, memory, or immediate
XX           := condition
address     := short

To use near or far conditional jumps, either reverse the sense of the
test and use a near or far conditional jump, or use the conditional
jump to jump to a near or far unconditional jump instruction.

LOOPS are used for iteration control.
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Syntax:

LOOP x Address

 means:

 C X = CX - 1

 if CX = 0, fall thru, else jump

There are also forms that allow us to terminate loop early. The loop
involves short jumps only, so there is a maximum size.

The Loop instruction is placed at the end of the loop; it jumps back
to the beginning. This means there is at least one iteration through
the loop. We need to initialize the repeat count before entering the
loop.

X86 Boot sequence

How does  the  processor  get  started?  Upon power  on,  a  special
hardware  circuit  generates  a  RESET  signal  to  the  processor.
RESET is a special type of interrupt. The RESET signal takes the
processor to a known state. All of the registers will contain known
values,  defined  by  the  manufacturer.  Specifically,  the  program
counter contains a specific address for program start. For the Intel
x86 architecture,  this is at the top of memory.  Thus, we need a
Jump instruction  at  the top of memory,  to a  bootloader  routine.
This can be implemented by having some non-volatile memory at
the top of the address space. 

The 8086 reset

When you hit the red button, what does this do? Well, it causes a 
special interrupt to the processor. 
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Several registers are set to particular values:

IP  = 0000h ; instruction pointer
CS = FFFFh ; Code Segment register
DS = ES = SS = 0000h ; data, extra, and stack 

segment registers.

After  reset on the 8086, the processor accesses an address 16 bytes
below the top of memory, fetches the instruction from there, and
executes it.

What is 16 bytes below the top of memory? Well, that's the key
question. Part of the Operating System, specifically the BIOS, is
responsible for putting a proper value there. Since the address is
only 16 bytes below the top of memory, we can't put much of a
program there, but we can put a Jump instruction to anywhere else
in memory.

So, what's there? Again, the Operating System is responsible for
putting a program there, that does whatever we want to do after a
RESET. Do a clean-up, restart a program, etc.

If there isn't something valid in those locations, the process still 
continues, but the results may be less than desirable.

The BIOS ROM

This  section  of  read-only  memory  is  provided  by  the  board
manufacturer,  and  is  a  bootstrap  program  to  initialize  the
processor, and load in an operating system. 

At the high end of memory, we need a persistent copy of the code
that will be executed in the case of a reset. This was accomplished
by putting the program in ROM, and putting it there in the address
space.   Since  the  8086  could  only  address  one  megabyte  of
memory,  this  simply put an upper limit  to the useable memory.
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And, at that time, system didn't have (couldn't afford) a megabyte
of memory anyway.  With later processors being able to address
larger memory spaces, the BIOS ROM stuck at the first megabyte
of memory was a pain. It remains that way.

At  the  low end of  memory 0000h,  we need some RAM, some
memory to read and write. Advanced processor's reset is similar to
that of the 8086, in that it initializes in real mode. This because the
BIOS is not compatible with Protected mode.

The contents of this memory has come to be called the BIOS, the
basic  input  output  system.  It  does  hardware  initialization,  some
testing (POST), and has a boot loader. The boot loader is a piece of
code just  smart  enough to load the rest  of the operating system
from files on a secondary storage device, such as a disk or flash
memory.  The  process  is  called,  pulling  yourself  up  by  your
bootstraps.  The  default  loader  gets  some  code  from  a  known
location on the storage device, loads it into memory, and jumps to
the  code.  This  rudimentary  loader  can  then  load  the  operating
systems (or, perhaps, one of several operating systems) from the
storage medium. 

Power On Self Test,  or POST, executes a rudimentary series of
tests  of  the  system  components.  This  is  incredibly  difficult,
conceptually,  because  the  computer  hardware  tests  itself.
Assumptions  must  be  made  about  minimal  functionality.  The
POST part of the BIOS function is probably the most interesting
part.
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CPUid instruction

An interesting exercise to see if we understand the hardware, is to
write  a  program to  determining  the  processor  hardware  we are
running  on.  Actually,  with  the  introduction  of  the  CPUid
instruction with the Pentium processor in 1993, it is very easy. We
just ask the processor what it is. Before the Pentium, we had to
make use of processor idiosyncrasies of the processors, executed in
the right order, to figure this out. It was also possible to identify
which company made the processor. Made for a good homework
assignment.

Today,  code  reads  the  processor  type  to  see  what  series  of
optimizations  should  be  applied.  Optimizations  for  one
implementation may be exactly  the wrong thing to do for other
implementations. 

LoadALL instruction

The  LOADALL  instruction  (OF,  05)  was  an  undocumented
opcode introduced with the 80286. There is a completely different
LOADALL (0F 07) for the 80386, and after that, the instruction
was discontinued. In the early processors, not all bit codes were
valid  instructions,  and the  ones  that  were  not  valid  instructions
were not necessarily ignored. Some non-valid bit patterns actually
did  something  useful.  However,  these  bit  patterns  would  not
necessarily work with X86 processors from other manufacturers.
Now, un-implemented instruction codes default to an interrupt. 

The LOADALL is a deliberate instruction, kept out of the general
instruction  list.  Its  function was to  load all  of the CPU internal
registers at once. This allowed cpu states not generally allowed in
the X86 programming model.  It required 195 machine cycles to
complete, and used a 102 byte area in memory starting at address
080016 to hold the entire set of processor state information. It was a
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backdoor method of getting out of protected mode without a reset
on  the  80286.  The  80386  Loadall  was  undocumented  and  not
supported by Intel. The hex code was OF 07. It loaded a 204 byte
area pointed to by the ES:EDI register pair into all of the internal
registers.  That  covered  the  entire  internal  execution  state
information. 

LOADALL  was  used  by  utilities  to  gain  access  to  additional
memory without leaving REAL mode. This was used by the utility
HIMEM.SYS. It would also allow a 16-bit protected mode. This
was used in  Digital  Researche's  Concurrent  DOS 286 operating
system.  LOADALL  could  also  enter  a  real  mode  with  paging
support on 386’s. 

With  full  protected  mode  operating  systems,  the  LOADALL
instruction was not needed. 

Self-Modifying code in x86

First, understand, self-modifying code is evil. You should never do
it.  It  is  all  Von  Neumann's  fault,  because  he  erased  the  line
between the code and the data.

Actually, the assembler writes “data” into the code area. What we
are talking about here is a running program modifying itself as it
runs.  Sometimes  that  seems  like  a  clever  way  around  a  tough
problem, but it is extremely difficult to debug if something goes
wrong.

Code can modify itself during an initialization phase based on a
menu of input  parameters.  This eliminates  a  lot  of conditionals,
and  reducing  program  size.  We  can  also  have  a  program  that
modifies itself as it runs, overwriting instructions with new ones.
Essentially, we have dynamic instruction creation.
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Some higher order languages allow for code to be modified, while
others (Python, JavaScript) allow programs to create new code at
run time, which is then executed. 

Self-modifying  code  has  been  used  to  conceal  such  features  as
copy protection,  or viruses or malware.  Some operating systems
control the write-ability of the code segment. 

In systems with cache, writing to memory might actually only be
writing to the cache, which has a finite lifetime. 

Trivia Question: Which instruction in the x86 architecture 
assembles to 00 00 00 00 00 00 00 ?

Answer: ADD [BX+SI], AL

Protected mode

Protected Mode was introduced on the 80286. There were some 
issues. 

The  DOS  operating  system  was  not  compatible  with  Protected
Mode.  One  can  enter  Protected  Mode  from  DOS,  but  not
necessarily get back. Protected Mode was introduced on the 80286
to extend the addressing capabilities of the x86 architecture beyond
one megabyte. The 8086 native mode is called REAL mode. 

Protected mode on the 80286 is of some academic interest only,
because there is  no way of returning to real  mode,  except  by a
hardware  reset.  It  is  referred  to  by  some  as  virtual  mode.  The
concept was that setup would be done in real mode after reset, and
the  system  would  transition  to  Protected  mode  for  subsequent
operations. 

Operating systems such as OS/2, UNIX, linux, bsd, and Windows
take  advantage  of  Protected  Mode's  advanced  features.  For
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example,  multiple  copies of DOS can run under UNIX, sharing
system  resources  transparently.  The  640k  memory  barrier  is
artificial.

The  80286  and  80386  enter  real  mode  at  reset.  This  mode  is
comparable with 8086. By software, you can command an entry to
protected  mode.  On the 80286, it  isn’t  easy to  get  back to  real
mode via software. On the 80386 and subsequent processors, you
can.

In protected mode, you have all the features of real mode, plus:

o Virtual addressing

o More memory addressable (16 Mb vs. 1 Mb on the 
80286)

o Protection mechanisms for operating system 
software

Protected  Mode  offers  advanced  features  that  can  be  used  by
operating systems to support multitasking.

Virtual Addressing

The physical address space is what you have to work with. The
virtual address space is what you pretend to have to work with.
The  processor  does  the  dynamic  mapping  between  virtual  and
physical  address.  This  memory management  technique  is  called
address  translation,  and  requires  additional  overhead  on  each
memory access.

On 80286, physical address is 224 = 16 Megabytes, and the  virtual
address is 230 = 1 gigabyte.
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With virtual memory, you can write applications that assume you
have  1  gigabyte  available,  and  rely  on  the  operating  system to
swap the correct virtual memory pages into and out of the existing
physical memory. This, of course, takes time.

Memory beyond 640k without protected mode is possible, but it
involved  a  lot  of  overhead.  First,  we  need  to  look  at  memory
classifications.

In conventional  memory,  there  are  10 segments  of  64 k each -
“more than any programmer could ever need.” The 640k barrier is
at A0000h, with the display mapped memory being placed there.

Extended memory is memory beyond 1 megabyte on the 80286 
and subsequent. It needs a memory manager program, such as 
himem.sys.

Expanded memory uses  gaps  between 640k and 1 megabyte.  It
maps  up  to  16  megabytes  of  memory  into  these  gaps,  using  a
manager,  written  to  the  LIMM  specification  (Lotus-Intel-
Microsoft).  It was used for DOS applications,  not for Windows,
which has its own manager program.

Virtual memory

We can use hard disk space used as memory, in the form of a swap
file.  Disk  memory  is  much  less  expensive  than  semiconductor
memory, but much slower as well. The virtual memory is mapped
through regular memory. In additional to the penalty  of the speed,
there  is  extensive  software  overhead  as  well  in  the  translation
process.  Thrashing  refers  to  the  scenario  where  the  system  is
caught  up  in  swapping  memory,  without  getting  anything  else
done.

The upper memory area was the 384k above 640k, in the DOS
world.  There  is  system  hardware  mapping  in  this  area,  for
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example, for the display adapters, the BIOS in the pc architecture,
and BASIC in ROM in the IBM pc architecture. Unused memory
gaps are called upper memory blocks (UMB).

The  high  memory  area  is  the  first  64k  of  extended  memory.
Through a quirk of the addressing scheme, this can be addressed in
real mode.

To understand the physical address calculation process in protected
mode, we should first review the Physical Address Calculation in
real mode. There is a 16-bit segment specifier plus a 16-bit offset.
The address is in two 16-bit parts, a segment and an offset.  We
shift the segment part over to the left by four bits (or, equivalently,
multiply it by 16), and add the offset. We get a 20-bit result.

Physical address = segment * 16 + offset

This provides a 20-bit physical address which spans 220 = 1 
megabyte of address space.

(now it gets complicated)

In protected mode, there is a 16-bit segment selector plus a 16-bit
offset to yield a 32-bit virtual address. The virtual address is what
the running program uses. The system converts the virtual address
to a physical address (in real time) that goes out over the memory
bus to the system’s memory. There is more virtual memory than
real memory. The bookkeeping is handled by the system, partially
in hardware and partially in software.

Along with  protected  mode,  Intel  introduced  the  ring  model  of
privilege,  modeled  on  the  Unix  approach.  There  are  4  layers,
where the innermost is the most trusted, and the outermost is the
user program.
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The base address of the segment in memory is not calculated by
multiplying the segment specifier by 16, but rather by indexing a
table in memory. This table, previously set up by the program or
operating system, is called the descriptor table. It contains more
than just the address translation information.

The Selector Table contains entries called selectors. Selectors 
contain three fields:

The Requested Privilege Level (RPL),
The Table Indicator (TI), and 
Index (I) 

The RPL field does not concern address translation, but is used by
the operating system to implement privilege level protection. It is a
number  0-3.  The  intent  is  to  prevent  a  less-privileged  program
from accessing data from a more privileged one.

The TI field specifies the table to be used by the Global Descriptor
Table (TI = 0) or the Local Descriptor Table (TI = 1). These are
data  structures residing in memory,  and set up by the operating
system.  Global  Descriptor  Tables  are  pointed  to  by  the  Global
Descriptor Tables registers. The Descriptor Table Registers can be
read  and  written  by  specific  instructions;  the  GDTR  by  the
instructions  LGDT  and  SGDT,  and  the  LDTR  by  LLDT  and
SLDT. On the 80286, there is one GDT, and each task can have its
own LDT.

The Index is a pointer into the table. Descriptors are 8 bytes long.
The index item is a 24-bit address for the corresponding segment
(on the 80286. 32-bits on 80386 and subsequent).

The  24-bit  address  obtained  from the  selector  table  look-up  is
added  to  the  16  bit  offset  to  form  a  24-bit  physical  address.
Overflows are ignored, thus addresses wrap around.
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If TI = 0 (GDT) and Index = 0, this is the null selector. If it is used
for address translation, it results in an exception.

The index field is 13 bits, so a descriptor table can have up to 213

descriptors. Each describes a segment of 216 bytes. So, each task
can have a private memory space of 229 bytes. A segment is 64k
bytes  on  the  80286.  On the  80386 and  subsequent,  with  32-bit
offset addresses, the virtual address space is 246 bytes. 

Segment  descriptors  are  located  in  the  descriptor  table.  They
consist or two parts, a base address and a limit. They contain status
and control information for access. They provide a link between a
task, and a segment in memory. 

Memory  descriptors  specify  a  type,  code  or  data.  Code  is
executable, data can be read-only or read-write. These distinctions
are imposed by the data structure; the memory is Von Neumann,
and read-write. The Type field differs for code and data. The code
segment  can  be  accessed,  can  be  readable  or  not,  and  is
conforming or not. The data segment can be accessed, writable or
not, and expands up or expands down (like a stack).

The  access  byte  contains  an  indicator  bit  about  whether  the
segment is physically present in memory or not. 

Swapping and Mapping

The maximum amount of physical memory was 16 megabytes, so
disks are used to hold other virtual pages that are mapped into and
out of physical RAM by the operating system.

Further complication of protected mode includes the fact that the
math  coprocessors ('287, '387)  also have a  protected  mode,  and
interrupt  servicing  in  Protected  Mode  involves  an  Interrupt
descriptor table, interrupt gates, and call gates.
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In protected mode, calling and jumping involve an inter-segment
FAR call through a call gate. The privilege level of the caller is
checked against the privilege of the called program (in the gate
descriptor). It the level is not good enough, a general protection
fault (INT 0Dh) is generated. 

Before entering protected mode, all of the necessary data structures
such as the descriptors tables, must be properly set up. This is an
operating system function. Then the LMSW (load machine status
word) instruction is executed, with the PE (protection enable) bit =
1.  Simple.  BUT…. First,  the instruction queue must  be flushed.
This is because the instructions were fetched in real mode, but are
to  be executed  (now) in  protected  mode.  How do we flush the
queue?  Simply do a short jump to the very next location beyond
the jump. Jumps force an instruction queue flush. The astute reader
will notice that the short jump is fetched in real mode and executed
in protected mode, but that’s ok – it works. 

Exiting  protected  mode  on the 80286 required  a  RESET or  the
Loadall  instruction.  On the 80386 and subsequent, return to real
mode simply requires resetting the PE bit by instruction.

Another concept that came along with Protected Mode was that of
tasks. There can be many tasks in the system, only one running at a
time. These are controlled by the operating system (itself a task)
with the TSS- Task State Segment structure. This contains the task
state  (essentially,  register  contents).  The  processor  has  a  task
register for the currently running task that is user-visible. There are
also pointers (not visible) to the TSS. The Task register is loaded
and  stored  with  the  LTR/STR instructions.  The  TSS descriptor
looks  like  a  descriptor  that  we  have  talked  about,  but  has  an
idle/busy bit. Tasks are not re-entrant under this scheme.

The Task gate descriptor is an indirect, protected way of accessing
a task. It resides in the GDT. A task that does not have enough
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privilege to use the TSS descriptor can call another task through a
gate in the LDT. 

Task switching is managed by the operating system, and involves
controlled calls and jumps. Interrupts are also managed. 

Virtual-86 mode was introduced in the 80386 as an 8086 emulation
mode.  The  80386  can  implement  multiple  8086  environments
running  “simultaneously”  in  protected  environments.  These  are
virtual machines. There is some minor differences in how memory
above 1 megabyte is treated. 

Page  level  protection  was  implemented  on  the  80386  and
subsequent  processors.  This  involves  a  user/supervisor  bit,  and
supervisor  write  protection.  Paging  uses  smaller,  fixed-size
memory  blocks.  Segmentation  uses  larger,  variable  size  blocks.
Page  mode  is  enabled  with  a  single  bit.  It  can  be  used  with
segmentation, as an additional layer of protection, with additional
overhead. Pages in the x86 are 4096 bytes, at an address divisible
by 1000h.  The page directory and tables are used to control  the
pages. CR3, the control register, has the page frame address or the
page directory in the high order 20 bits. The page directory can
hold 1 million entries. Each entry is a pointer to a page table. The
page table contains pointers to physical memory.

MMX Extensions

The Pentium processors introduced a single-instruction multiple-
data  (SIMD)  extension  to  the  architecture  called  MMX,
MultiMedia  Extension,  in  1997.  It  included  eight  new  64-bit
registers.  These registers  are  meant  to  hold eight  8-bit  integers,
four 16-bit integers, or two 32-bit integers, which will be operated
upon in parallel.

The MMX registers  are  actually  mapped into  the  floating  point
registers,  making  it  tricky  to  do  floating  point  and  MMX
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operations simultaneously. The floating point registers are 80 bits
wide,  and the MMX registers use the lower 64 bits. The MMX
extension has continued in the IA-32. 

MMX supports saturation arithmetic. In this scheme, all operations
are  limited  to  a  fixed  range  between  a  defined  minimum  and
maximum.  Values  beyond  those  limits  are  not  recognized.  The
mathematical properties of associativity and distributivity are not
applicable  in  saturation  arithmetic.  An  alternative  to  saturation
arithmetic is where the values wrap-around, which unfortunately
changes  the  sign  in  twos-complement  representation.  For  audio
processing (louder-than-loud) and video processing (blacker-than-
black), saturation arithmetic works fine. It’s the issue of getting an
answer “close enough) in the time allowed. Saturation arithmetic
plays an important role in digital signal processing techniques for
video and audio processing.

In  1997,  AMD  released  an  enhanced  MMX architecture  called
3DNow!  which  added  32-bit  floating  point  to  MMX's  integer
operations. 

In 1999, Intel went to the SSE architecture with the Pentium-III,
and later the SSE2 with the Pentium 4. This refers to Streaming
SSE has new 128-bit registers, and corresponding instructions. An
SSE and a floating point instruction cannot be issued in the same
cycle,  due  to  resource conflicts.  SSE2 brought  double precision
floating  point  support.  SSE  has  70  additional  instructions  to
support operations from digital signal processing and graphics. 

SSE3  added  new  digital  signal  processing  features,  and  SSE4
added an instruction for vector dot product.

Advanced  Vector  Extensions  (AVX)  introduced  a  256-bit  data
path, and 3-operand instructions. These are extensions to the x86
architecture.  These  units  can  operate  on  256  or  512  bit  data
structures.  AVX-2  extends  integers  to  256  bits,  and  adds  bit
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manipulation and multiply. AVX-512 extends data and operations
to  512  bits.  Vector  data  can  be  loaded  from  non-contiguous
memory  locations,  referred  to  as  gather,  and  stored  to  non-
contiguous  locations,  called  scatter.  Exponential  and  reciprocal
instructions  accelerate  transcendental  functions.  They implement
the fused multiply-add operation, which looks like: X = round (a ×
b + c).

Tolapi

This is an Intel system-on-a-chip, based on a Pentium M core, with
included I/O and security.  The current clock rates extend to 1.2
GHz. It has a 256k onchip cache, and supports DDR external ram.
There is extensive I/O and interfacing support. These units support
the instructions MMX, SSE, SSE2 and SSE3.

TSX-ni is an architectural extension to IA-86, the  Transactional
Synchronization  Extensions.  This  supports  transactional  memory
to simplify concurrent programming. Essentially,  in transactional
memory, a set of load or store instructions can be concurrent.

Intel x-86 Embedded
This  section  discusses  the  x-86  embedded  architecture,  built
around  the  x86  Atom  processor,  with  added  features  for  the
embedded environment. This takes the form of included memory
and I/O, so we can have a single chip solution. 

Intel Quark
The Intel  Quark  SE is  a  32-bit  x86 architecture  SOC. The cpu
operates at 32 MHz. It does not support floating point operations,
but does have an 8-kbyte instruction cache. The sensor subsystem
includes  a  32-bit  Argonaut  DSP-RISC core  which  does  support
floating point, and a hardware-based pattern matching accelerator,
with 128 “neurons.” There is 384 kbytes of flash memory, and 80
kbytes of SRAM, which is shared between the processors. There
are 5 timers, one of which is the watchdog. For I/O, it supports
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dual UART's, dual SPI, usb, 32 GPIO's, and 2 general purpose i2c's
and 2 master-only i2c's in the sensor section. The are also dual i2s
and  19  analog  comparators  (no  A/D).  The  system  has  8  dma
channels. All of this is on a 10mm x 10mm package.

The Zephyr small-footprint Open Source Kernel OS runs on the
Quark processor core. It is a project of the linux foundation, that
Intel contributed to.

The  architecture  also  has  the  XD  (execute  disabled)  bit  for
security.  This allows memory pages to  be marked as  data-only.
This counters software exploits and buffer-overflow attacks.

The Intel Galileo board was based on the Quark SoC X1000, and
was  the  first  Intel  board  that  was  hardware  and  software
compatible with the Arduino shields. It is now retired.

Intel Curie 
The Intel Curie SOC Module is a 32-bit System-on-a-chip, using
the Quark processor. The module can be hosted on a development
board, with interfacing connectors. The module was announced in
2015. 

The integrated digital signal processor based sensor hub interfaces
with  the  included  BOSCH  BMI160  6-axis  accelerometer/gyro.
These devices are interfaced via SPI. There is also a I2C interface
for an external magnetometer. JTAG is supported.

There  is  a  pattern  matching  engine,  that  identifies  motions  and
activities,  using  the  6-axis  sensor.  It  compares  these  with
previously stored values  in memory.  The device  includes  a  low
power  Bluetooth  module,  for  wireless  interfacing  with  external
devices. The module footprint is 11 x 8 mm in size, and 2 mm tall.
The  device  comes  with  a  bootloader  in  flash,  that  can  be  re-
installed over JTAG.

Intel Edison
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The Intel Edison is a System On Module (SOM) that is the basis
for the Arduino-101 board, and the Edison Break-out board, which
is a little bigger than an Arm-based Arduino. It has a dual-core,
dual-thread 32-bit Atom cpu operating at 500 MHz, and a 32-bit
Quark microcontroller operating at 100 MHz. The Edison is also
the  basis  of  the  somewhat  larger  IoT  Analytics  board,  which
interfaces with aps on the Cloud for data analytics. 

Wrap Up

The x86 architecture has stood the test of time, and has seen may
doublings  of processor performance over 40 years.  Here's  to 40
more!  By that time, we'll all  have an x86 machine implanted at
birth, with enough ROM to boot us up.
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Glossary of Terms and Acronyms

1’s  complement  –  a  binary  number  representation  scheme  for
negative values.

2’s complement  – another binary number  representation  scheme
for negative values.

Accumulator – a register to hold numeric values during and after
an operation.

ACM  –  Association  for  Computing  Machinery;  professional
organization.

ALU – arithmetic logic unit.

ANSI – American National Standards Institute

API  –  application  program  interface;  specification  for  software
modules to communicate.

ASCII - American Standard Code for Information Interchange, a 7-
bit code; developed for teleprinters.

ASIC  –  application  specific  integrated  circuit,  custom  or
semicustom,.

Assembly language – low level programming language specific to
a particular ISA.

Async – asynchronous; using different clocks.

Babbage,  Charles  –early  19th  century  inventor  of  mechanical
computing  machinery  to  solve  difference  equations,  and  output
typeset results; later machines would be fully programmable. 

Baud – symbol rate; may or may not be the same as bit rate.

BCD – binary coded decimal.  4-bit  entity  used  to  represent  10
different decimal digits; with 6 spare states.

Big-endian – data format with the most significant bit or byte at the
lowest address, or transmitted first.
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Binary – using base 2 arithmetic for number representation.

BIOS – basic input output system; first software run after boot.

BIST – built-in self test.

Bit – smallest unit of digital information; two states.

Blackbox – functional device with inputs and outputs, but no detail
on the internal workings.

Boolean – a data type with two values; an operation on these data
types;  named  after  George  Boole,  mid-19th  century  inventor  of
Boolean algebra.

Bootstrap  –  a  startup  or  reset  process  that  proceeds  without
external intervention.

Buffer – a temporary holding location for data.

Bug – an error in a program or device.

Bus – data channel, communication pathway for data transfer.

Byte – ordered collection of 8 bits; values from 0-255

C – programming language from Bell Labs, circa 1972.

Cache  –  faster  and  smaller  intermediate  memory  between  the
processor and main memory.

Cache coherency – process to keep the contents of multiple caches
consistent,

CAS – column address strobe (in DRAM refreshing)

Chip – integrated circuit component.

Clock  –  periodic  timing  signal  to  control  and  synchronize
operations.

CMOS – complementary metal oxide semiconductor; a technology
using both positive and negative semiconductors to achieve low
power operation.

Complement – in binary logic, the opposite state.
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Compilation  –  software  process  to  translate  source  code  to
assembly or machine code (or error codes).

Control  Flow  –  computer  architecture  involving  directed  flow
through the program; data dependent paths are allowed.

Coprocessor – another processor to supplement the operations of
the  main  processor.  Used for  floating  point,  video,  etc.  Usually
relies on the main processor for instruction fetch; and control.

Cots – commercial, off-the-shelf.

CPU – central processing unit.

CSI – Camera serial interface

Dataflow – computer architecture where a changing value forces
recalculation of dependent values.

DDR – dual data rate (memory).

Deadlock – a situation in which two or more competing actions are
each waiting for the other to finish, and thus neither ever does.

Denorm – in floating point representation, a non-zero number with
a magnitude less than the smallest normal number.

Device driver – specific software to interface a peripheral to the
operating system.

Digital  –  using  discrete  values  for  representation  of  states  or
numbers.

Dirty bit – used to signal that the contents of a cache have changed.

DMA - direct memory access (to/from memory, for I/O devices).

Double word – two words; if word = 8 bits, double word = 16 bits.

Dram – dynamic random access memory.

EIA – Electronics Industry Association.

Epitaxial – in semiconductors, have a crystalline overlayer with a
well-defined orientation. 
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Eprom – erasable programmable read-only memory.

EEprom – electrically erasable read-only memory.

Exception – interrupt due to internal events, such as overflow.

FET – field effect transistor.

Fetch/execute cycle – basic operating cycle of a computer; fetch
the instruction, execute the instruction.

Firmware – code contained in a non-volatile memory.

Fixed point – computer  numeric  format  with a fixed number of
digits or bits, and a fixed radix point. Integers.

Flag – a binary indicator.

Flash  memory  –  a  type  of  non-volatile  memory,  similar  to
EEprom.

Flip-flop – a circuit with two stable states; ideal for binary.

Floating point – computer numeric format for real numbers;  has
significant digits and an exponent.

FPGA – field programmable gate array.

FPU – floating point unit, an ALU for floating point numbers.

Full duplex – communication in both directions simultaneously.

Gate – a circuit to implement a logic function; can have multiple
inputs, but a single output.

Giga - 109 or 230

gpio – general purpose input, output

GPU – graphics processing unit. ALU for graphics data.

GUI – graphics user interface.

Handshake – co-ordination mechanism.

Harvard  architecture  –  memory  storage  scheme  with  separate
instructions and data.
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Hexadecimal – base 16 number representation.

Hexadecimal  point  –  radix  point  that  separates  integer  from
fractional values of hexadecimal numbers.

IDE – Integrated development environment for software.

IEEE  –  Institute  of  Electrical  and  Electronic  Engineers.
Professional organization and standards body.

IEEE-754  –  standard  for  floating  point  representation  and
operations.

Infinity - the largest number that can be represented in the number
system.

Integer  –  the  natural  numbers,  zero,  and  the  negatives  of  the
natural numbers.

Interrupt – an asynchronous event to signal a need for attention
(example: the phone rings).

Interrupt vector – entry in a table pointing to an interrupt service
routine; indexed by interrupt number.

I/O – Input-output from the computer to external devices, or a user
interface.

IoT – Internet of Things

IP – intellectual property

ISA – instruction set architecture, the software description of the
computer.

ISO – International Standards Organization.

ISR  –  interrupt  service  routine,  a  subroutine  that  handles  a
particular interrupt event.

JTAG – Joint Test Action Group;  industry group that lead to IEEE
1149.1,  Standard  Test  Access  Port  and  Boundary-Scan
Architecture.
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Junction – in semiconductors, the boundary interface of the n-type
and p-type material.

Kernel – main portion of the operating system. Interface between
the applications and the hardware.

Kilo – a prefix for 103 or 210

LAN – local area network.

Latency – time delay.

List – a data structure.

Little-endian – data format with the least significant bit or byte at
the highest address, or transmitted last.

Logic operation – generally,  negate,  AND, OR, XOR, and their
inverses.

Loop-unrolling – optimization of a loop for speed at the cost of
space.

LRU – least recently used; an algorithm for item replacement in a
cache.

LSB – least significant bit or byte.

LUT – look up table.

Machine  language  –  native  code  for  a  particular  computer
hardware.

Mainframe – a computer you can’t lift.

Mantissa  –  significant  digits  (as  opposed to  the  exponent)  of  a
floating point value.

Master-slave – control process with one element in charge. Master
status may be exchanged among elements.

Math operation – generally, add, subtract, multiply, divide.

Mega - 106 or 220
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Memory leak – when a program uses memory resources but does
not return them, leading to a lack of available memory.

Memory scrubbing – detecting and correcting bit errors.

MESI  –  modified,  exclusive,  shared,  invalid  state  of  a  cache
coherency protocol.

Metaprogramming  –  programs  that  produce  or  modify  other
programs.

Microcode – hardware level  data structures to translate  machine
instructions into sequences of circuit level operations.

Microcontroller  –  microprocessor  with  included  memory  and/or
I/O.

Microprocessor – a monolithic cpu on a chip.

Microprogramming – modifying the microcode.

MIMD – multiple instruction, multiple data

Minicomputer – smaller than a mainframe, larger than a pc.

MIPI – Mobile Industry Processor Interface

MIPS – millions of instructions per second; sometimes used as a
measure of throughput.

MMU – memory management unit; translates virtual to physical
addresses.

MRAM – Magnetorestrictive random access memory. Non-volatile
memory approach using magnetic storage elements and integrated
circuit fabrication techniques.

MSB – most significant bit or byte.

Multiplex  –  combining  signals  on  a  communication  channel  by
sampling.

Mutex – a data structure and methodology for mutual exclusion.

Multicore  – multiple  processing cores on one substrate  or  chip;
need not be identical.
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NAN – not-a-number; invalid bit pattern.

NAND – negated (or inverse) AND function.

NDA – non-disclosure agreement; legal agreement protecting IP.

Nibble – 4 bits, ½ byte.

NIST  –  National  Institute  of  Standards  and  Technology  (US),
previously, National Bureau of Standards.

NMI – non-maskable interrupt; cannot be ignored by the software.

NMOS – negative metal oxide ssemiconductor

NOR – negated (or inverse) OR function

Normalized  number  –  in  the  proper  format  for  floating  point
representation. 

NUMA – non-uniform memory access for multiprocessors; local
and global memory access protocol.

NVM – non-volatile memory.

Octal – base 8 number.

Off-the-shelf – commercially available; not custom.

Opcode – part of a machine language instruction that specifies the
operation to be performed.

Open source – methodology for hardware or software development
with free distribution and access.

Operating  system  –  software  that  controls  the  allocation  of
resources in a computer.

OSI – Open systems interconnect model for networking, from ISO.

Overflow  -  the  result  of  an  arithmetic  operation  exceeds  the
capacity of the destination.

Paging – memory management technique using fixed size memory
blocks.

Paradigm – a pattern or model
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Paradigm  shift  –  a  change  from  one  paradigm  to  another.
Disruptive or evolutionary.

Parallel  –  multiple  operations  or  communication  proceeding
simultaneously.

Parity – an error detecting mechanism involving an extra check bit
in the word.

PC – personal computer, politically correct, program counter.

PCB – printed circuit board.

PCI – peripheral interconnect interface (bus).

Peta - 1015 or 250

Pinout – mapping of signals to I/O pins of a device.

Pipeline – operations in serial, assembly-line fashion.

Pixel – picture element; smallest addressable element on a display
or a sensor..

PROM – programmable read-only memory.

Quad word – four words. If word = 16 bits, quad word is 64 bits.

Queue  –  first  in,  first  out  data  buffer  structure;  hardware  of
software.

Radix  point  –  separates  integer  and  fractional  parts  of  a  real
number.

RAM – random access  memory;  any item can be access in  the
same time as any other.

RAS – Row address strobe, in dram refresh.

Register – temporary storage location for a data item.

Reset – signal and process that returns the hardware to a known,
defined state.

RISC – reduced instruction set computer.

ROM – read only memory.
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Real-time  –  system  that  responds  to  events  in  a  predictable,
bounded time..

Sandbox – an isolated and controlled environment to run untested
or potentially malicious code.

SDRAM – synchronous dynamic random access memory.

Segmentation – dividing a network or memory into sections.

Self-modifying code – computer code that modifies itself as it run;
hard to debug

Semiconductor  –  material  with electrical  characteristics  between
conductors  and insulators;  basis  of current  technology processor
and memory devices.

Semaphore –signaling element among processes.

Serial – bit by bit.

Server – a computer running services on a network.

Shift – move one bit position to the left or right in a word.

Sign-magnitude – number representation with a specific sign bit.

Signed number – representation with a value and a numeric sign.

SIMD – single instruction, multiple data.

SIMM – single in-line memory module.

SOC – system on chip

Software – set of instructions and data to tell a computer what to
do.

SMP – symmetric multiprocessing.

SRAM – static random access memory.

SSE – Streaming SIMD Extensions

Stack  –  first  in,  last  out  data  structure.  Can  be  hardware  of
software.
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Stack pointer – a reference pointer to the top of the stack.

State machine – model of sequential processes.

Superscalar  –  computer  with  instruction-level  parallelism,  by
replication of resources.

Synchronous – using the same clock to coordinate operations.

System  –  a  collection  of  interacting  elements  and  relationships
with a specific behavior.

Table – data structure. Can be multi-dimensional.

Tera - 1012 or 240

Test-and-set – coordination mechanism for multiple processes that
allows reading to a location and writing it in a non-interruptible
manner.

Thread – smallest  independent  set of instructions managed by a
multiprocessing operating system.

TLB – translation lookaside buffer – a cache of addresses.

TRAP – exception or fault handling mechanism in a computer; an
operating system component.

Triplicate – using three copies (of hardware, software, messaging,
power supplies, etc.). for redundancy and error control.

Truncate – discard. Cutoff, make shorter.

TSX – transactional sync extensions

TTL  –  transistor-transistor  logic  in  digital  integrated  circuits.
(1963).

UART – universal asynchronous receiver transmitter.

Underflow – the result of an arithmetic operation is smaller than
the smallest representable number.

Unsigned number – a number without a numeric sign.

USB – universal serial bus
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Vector – single dimensional array of values.

VHDL-  very  high  level  description  language;  a  language  to
describe integrated circuits and asic/ fpga’s.

VIA – vertical conducting pathway through an insulating layer in a
semiconductor.

Virtual memory – memory management technique using address
translation.

Virtualization – creating a virtual resource from available physical
resources.

Virus – malignant computer program.

VLIW – very long instruction word – mechanism for parallelism.

von  Neumann  –  John,  a  computer  pioneer  and  mathematician;
realized that computer instructions are data.

Wiki – the Hawaiian word for “quick.” Refers to a collaborative
content website.  

Word – a collection of bits of any size; does not have to be a power
of two.

Write-back – cache organization where the data is not written to
main memory until the cache location is needed for re-use. 

Write-through – all cache writes also go to memory.

X86 – Intel -16, -32, 64-bit ISA.

XOR – exclusive OR; either but not both
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